
The Journey of OHDSI: Where have we been and where can we go together?

Patrick Ryan, PhD
Vice President, Observational Health Data Analytics, Janssen
Research and Development

Assistant Professor, Adjunct, Department of Biomedical Informatics, Columbia University Medical Center

The journey to real-world evidence

The journey to real-world evidence

Different types of observational data:

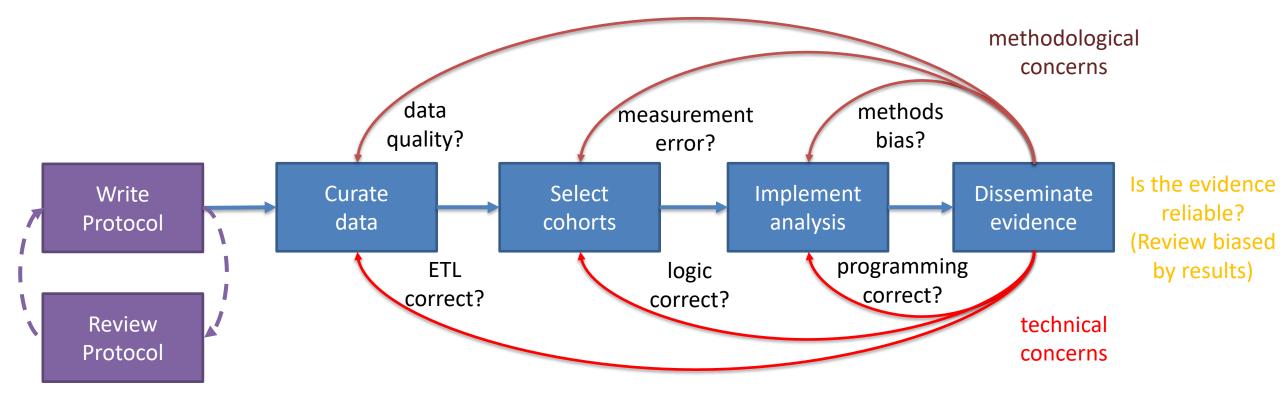
- Populations
 - Pediatric vs. elderly
 - Socioeconomic disparities
- Care setting
 - Inpatient vs. outpatient
 - Primary vs. secondary care
- Data capture process
 - Administrative claims
 - Electronic health records
 - Clinical registries
- Health system
 - Insured vs. uninsured
 - Country policies

Patient-level data in source system/schema

The journey to real-world evidence

Patient-level data in source system/schema

Types of evidence desired:


- Clinical characterization
 - Clinical trial feasibility
 - Treatment utilization
 - Disease natural history
 - Quality improvement
- Population-level effect estimation
 - Safety surveillance
 - Comparative effectiveness
- Patient-level prediction
 - Precision medicine
 - Disease interception

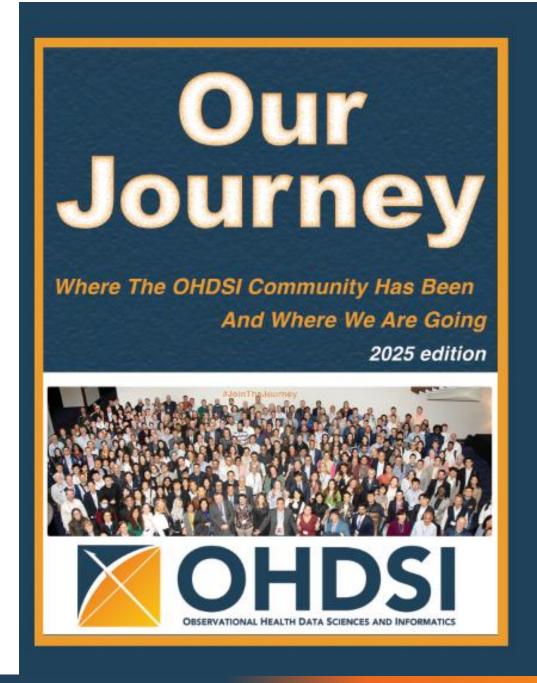
Current status quo in observational research makes it challenging to build trust in evidence

Does the study provide an unbiased effect estimate? Are the findings generalizable to the population of interest?

Can the study be fully reproduced?

Does the analysis actually do what the protocol said it would do?

Desired attributes for reliable evidence


Desired attribute	Question	Researcher	Data	Analysis		Result
Repeatable	Identical	Identical	Identical	Identical	=	Identical
Reproducible	Identical	Different	Identical	Identical	=	Identical
Dankadala	Idoution	Ca	Cinallan	lala attaal		Ciarilan
Replicable	Identical	Same or different	Similar	Identical	=	Similar
Generalizable	Identical	Same or different	Different	Identical	=	Similar
Robust	Identical	Same or different	Same or different	Different	=	Similar
Calibrated	Similar (controls)	Identical	Identical	Identical	=	Statistically consistent

OHDSI's mission

To improve health by empowering a community to collaboratively generate the evidence that promotes better health decisions and better care

OHDSI collaborators **OHDSI By The Numbers** • 4,751 collaborators • 88 countries • 9,004 followers on LinkedIn • 21 time zones • 6 continents • 1 community

Join the Journey at https://ohdsi.org/

Workgroups led by community

@ www.ohdsi.org/workgroups

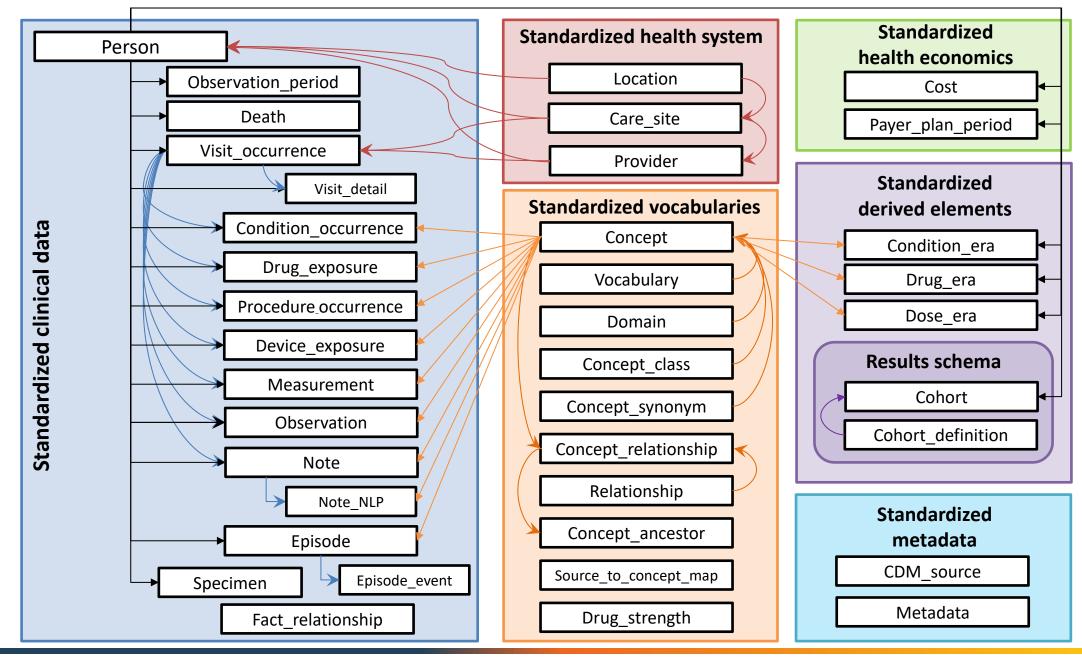
Regional chapters and national nodes

Europe

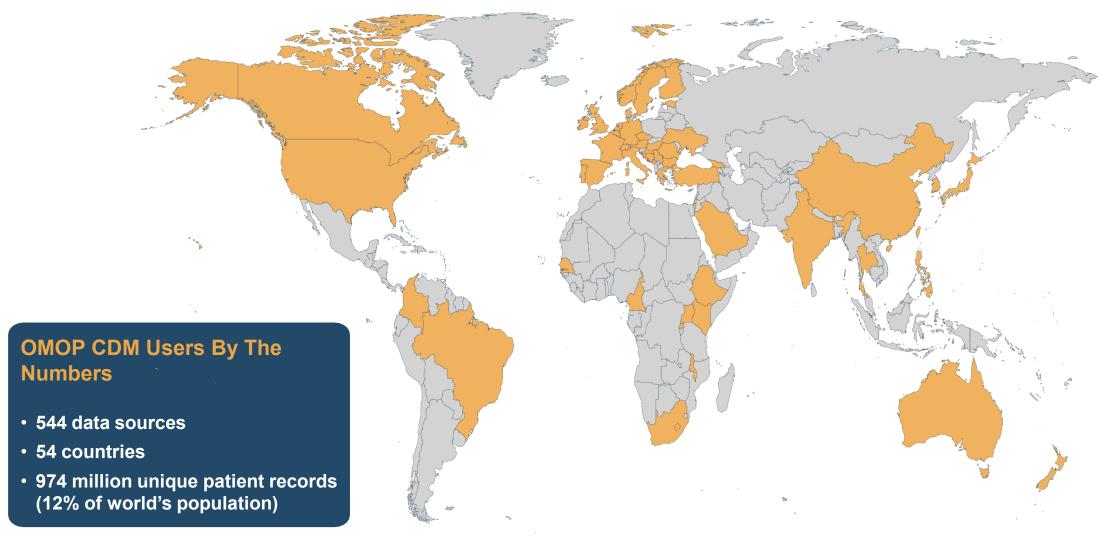
Republic of Korea

Latin America

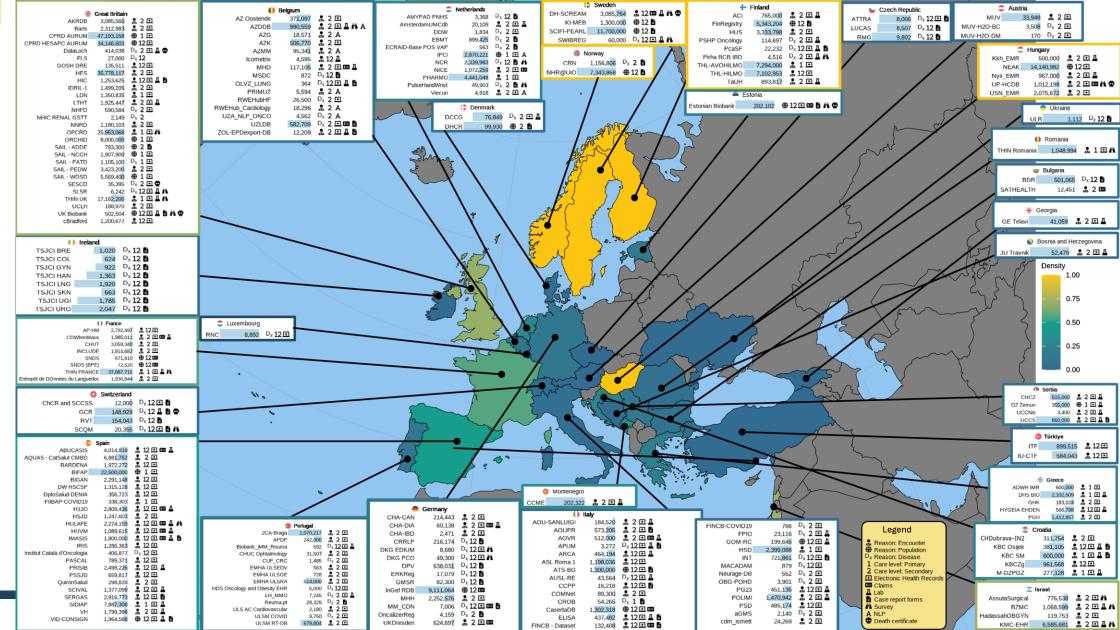
Node.....Lead(s)


Belgium	Liesbet Peeters, Annelies Verbiest, Ilse Vermeulen
Denmark	Ismail Gögenur, Martin Høyer Rose, Andreas Weinberger Rosen
Estonia	
Finland	Eric Fey, Gustav Klingstedt
Germany	Ines Reinecke, Michele Zoch
Greece	Anastasia Farmaki, Pantelis Natsiavas, Grigoris Papapostolou
Hungary	Zsolt Bagyura, Ágota Mészáros
Ireland	Aedin Culhane, Mark Lawler, Catherine Mahoney
Israel	Chen Yanover
Italy	Lucia Sacchi, Matteo Gabetta
Luxembourg	Claudine Backes, Andreas Kremer, Maria Quaranta
Netherlands	Renske Los, Aniek Markus
Norway	Espen Enerly, Siri Larønningen
Portugal	
Spain	Miguel Angel Mayer, Talita Duarte Salles
Switzerland	Olga Endrich, Karen Triep
United Kingdom	Dani Prieto-Alhambra

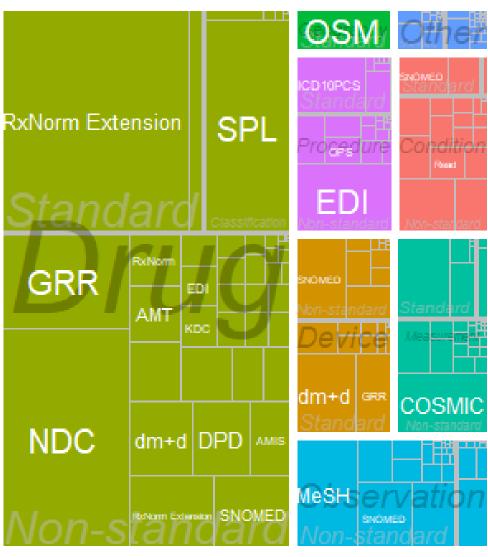
oming soon Austri



OMOP Common Data Model v5.4

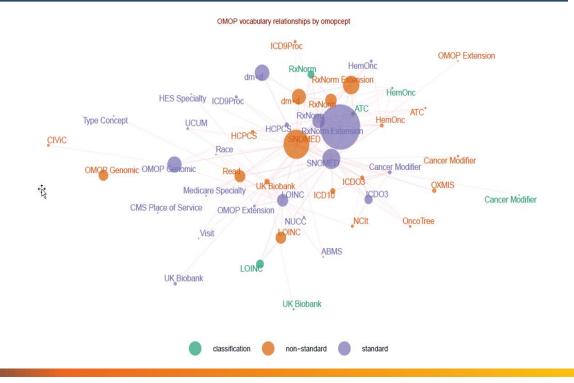


OMOP Common Data Model adoption


European Health Data & Evidence Network (EHDEN)

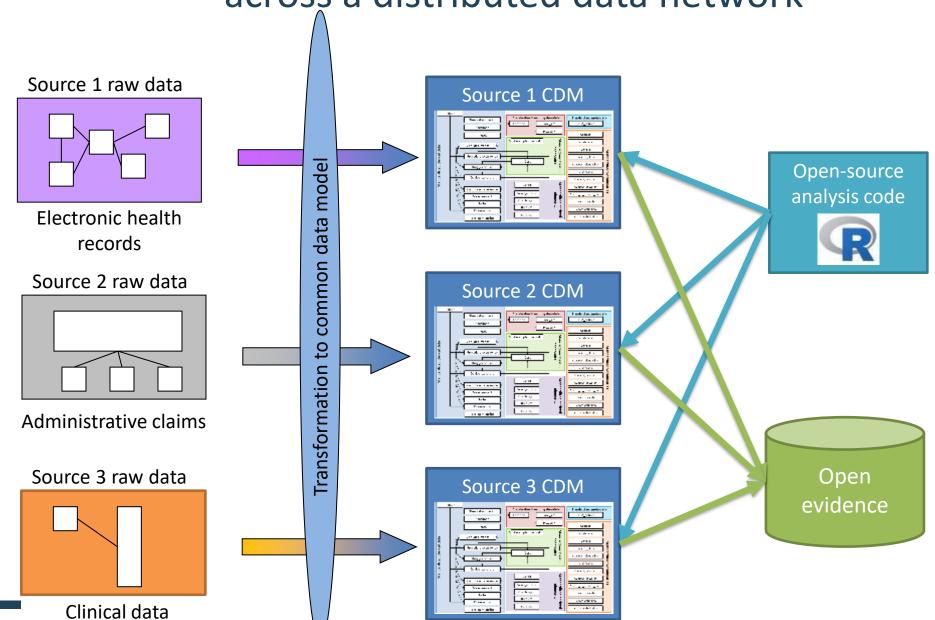
Blacketer JMIR 2025

OHDSI standardized vocabularies

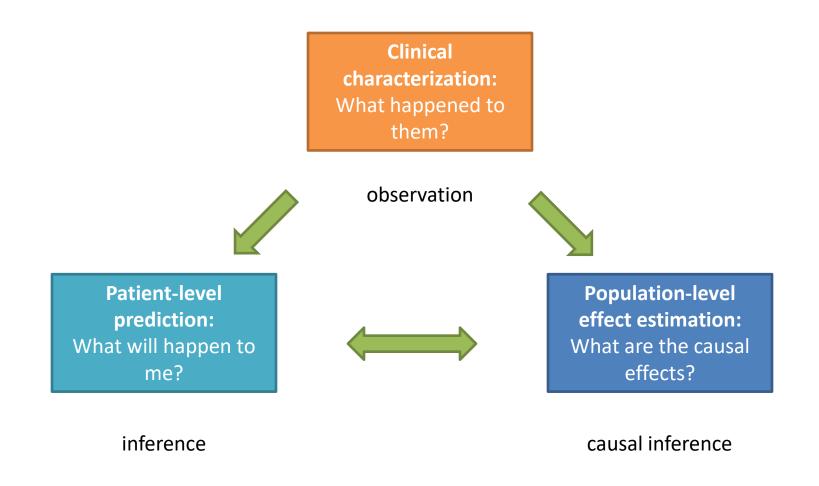


OHDSI Vocabularies By The Numbers

as of August 2025 release

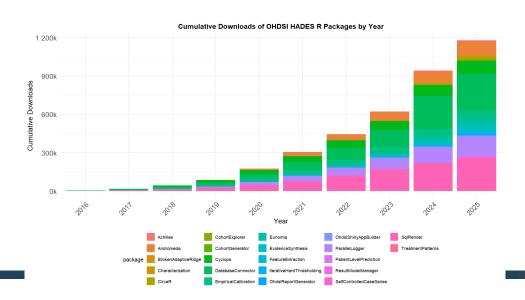

- 11,804,307 concepts
- 87,948,636 concept relationships
- 3,784,263 standard concepts971,914 classification concepts
- 101,696,159 ancestral relationships
- 145 vocabularies
- 6,028,711 concept synonyms

- 43 domains
- 1 Shared Resource to Enable Data Standards



Common data model can enable standardized analytics across a distributed data network

Complementary evidence to inform the patient journey



Analytic use case Type		Structure	Example	
	Disease Natural History	Amongst patients who are diagnosed with <insert disease="" favorite="" your="">, what are the patient's characteristics from their medical history?</insert>	Amongst patients with rheumatoid arthritis , what are their demographics (age, gender), prior conditions, medications, and health service utilization behaviors?	
Clinical characterization	Treatment utilization	Amongst patients who have <insert disease="" favorite="" your="">, which treatments were patients exposed to amongst treatments for disease> and in which sequence?</insert>	Amongst patients with depression , which treatments were patients exposed to SSRI , SNRI , TCA , bupropion , esketamine and in which sequence?	
	Outcome incidence	Amongst patients who are new users of <insert drug="" favorite="" your="">, how many patients experienced <insert adverse="" drug="" event="" favorite="" from="" known="" profile="" the="" your=""> within <time exposure="" following="" horizon="" start="">?</time></insert></insert>	Amongst patients who are new users of methylphenidate , how many patients experienced psychosis within 1 year of initiating treatment ?	
Population-level	Safety surveillance	Does exposure to <insert drug="" favorite="" your=""> increase the risk of experiencing <insert adverse="" an="" event=""> within <time exposure="" following="" horizon="" start="">?</time></insert></insert>	Does exposure to ACE inhibitor increase the risk of experiencing Angioedema within 1 month after exposure start?	
effect estimation	Comparative effectiveness	Does exposure to <insert drug="" favorite="" your=""> have a different risk of experiencing <insert (safety="" any="" benefit)="" or="" outcome=""> within <time exposure="" following="" horizon="" start="">, relative to <insert comparator="" treatment="" your="">?</insert></time></insert></insert>	Does exposure to ACE inhibitor have a different risk of experiencing acute myocardial infarction while on treatment , relative to thiazide diuretic ?	
	Disease onset and progression	For a given patient who is diagnosed with <insert disease="" favorite="" your="">, what is the probability that they will go on to have <another complication="" disease="" or="" related=""> within <time diagnosis="" from="" horizon="">?</time></another></insert>	For a given patient who is newly diagnosed with atrial fibrillation , what is the probability that they will go onto to have ischemic stroke in next 3 years ?	
Patient level prediction	Treatment response	For a given patient who is a new user of <insert chronically-used="" drug="" favorite="" your="">, what is the probability that they will <insert desired="" effect=""> in <time window="">?</time></insert></insert>	For a given patient with T2DM who start on metformin, what is the probability that they will maintain HbA1C<6.5% after 3 years?	
	Treatment safety	For a given patient who is a new user of <insert drug="" favorite="" your="">, what is the probability that they will experience <insert adverse="" event=""> within <time exposure="" following="" horizon="">?</time></insert></insert>	For a given patients who is a new user of warfarin , what is the probability that they will have GI bleed in 1 year?	

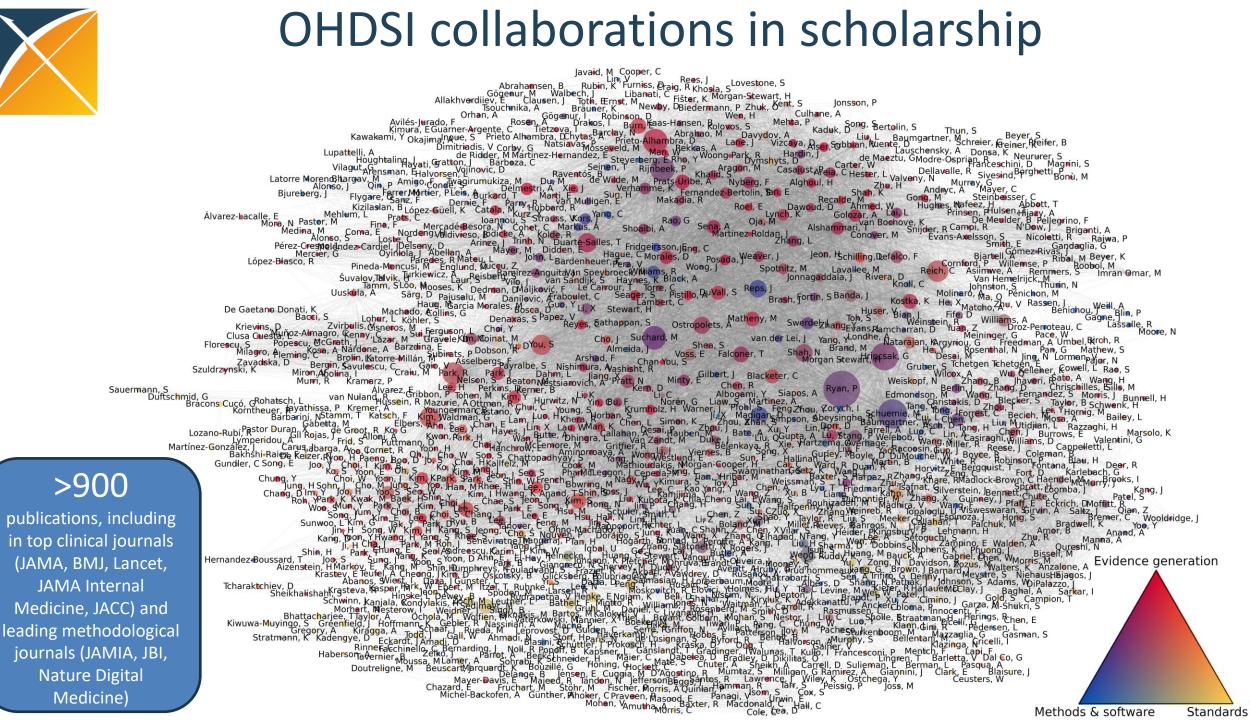
Open-source software development

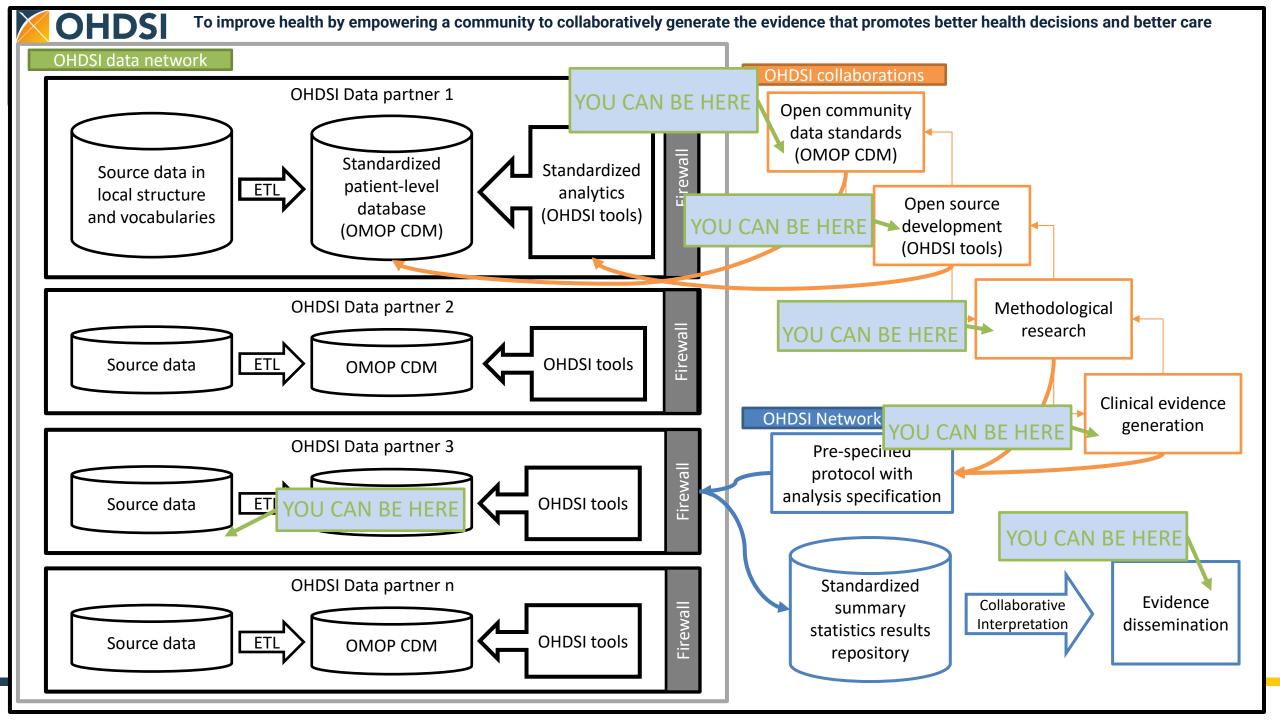
- HADES is an ecosystem of 41 R packages to support standardized analytics for the OMOP CDM and across OHDSI network
- OHDSI CRAN packages (n=22) have been downloaded >1m times

Package	version	Maintainer(s)	Availabilit
Achilles	V5.7.2	Frank DeFalco	CRAN
Andromeda	V3.1.1	Martijn Schuemie	CRAN
BigKon	V1.9.Z	Martijn Schuemie	GitHub
BrokenAdaotiveRidge	V1.7.1	Marc Suchard	CRAN
Caor	V2.1.0	Martin Lavallee	GitHub
Characterization	y2.2.0	Jenna Reps	CRAN
CirceR	v1.3.3	Chris Knoll	CRAN
CohortDiagnostics	v3,4,2	Jamie Gilbert	GitHub
CohortExplorer	9010	Gowtham Rao	CRAN
CohortGenerator	49.12.2	Anthony Sena	CRAN
Cohartincidence	94.1.0	Chris Knoll	GitHub
CohartMethod	V5.5.0	Martijn Schuemie	GitHub
Cyclons	v3.6.0	Marc Suchard	CRAN
DatabaseConnector	96.4.0	Martijn Schuemie	CRAN
DataQualityGashboard	v2.7.0	Katy Sadowksi	GitHub
DeepPatientLevelPrediction	v2.2.0	Egill Fridgeirsson	GitHub
EmpiricalCalibration	V3.1.4	Martijn Schuemie	CRAN
Ensemble Patient Level Prediction	v1.12	Jenna Reps	GitHub
Eunomia	v2.1.0	Frank DeFaico	CRAN
EvidenceSynthesis	v1.0.0	Martijn Schuemie	CRAN
FeatureExtraction	vk 11.6	Ger Inberg	CRAN
ttydra	*0.40	Anthony Sena	Deprecate
BeratheHardThresholding	v1.03	Marc Suchard	CRAN
Keeper	WH21	Anna Ostropolets	GitHub
MethodEvaluation	v2:40	Martijn Schuemie	GitHub
OhdsiReportGenerator	vi.i.i	Jenna Reps	CRAN
OhdsSharing	80.2.2	Lee Evans	Gittiub
OhdsiShinvapoBuilder	V1.0.0	Jenna Reps	CRAN
OhdsiShinyModules	v8.10	Jenna Reps	GitHub
Parallett.ogger	v3.50	Martijn Schuemie	CRAN
PatientLevelPrediction	s6 50	Egill Friogeirsson & Jenna Reps	CRAN
PhenotypeLibrary.	V2.38.0	Gowtham Rao	GitHub
Phenaluator	v2.2.15	Joel Swerdel	GitHub
ResultModelManager	we 511	Jamie Gilbert	CRAN
ROhds/WebApi	vi 22	Gowtham Rao	GitHub
SelfControlledCaseSeries	v6.1.0	Martijn Schuemie	CRAN
SelfControlledCohort	v1.60	Jamie Gilbert	GitHub
ShinyAppBuilder	v2.20	Jenna Reps	Deprecate
SqiRender	v1,18.3	Martijn Schuemie	CRAN
Strategus	VI/41	Anthony Sena	GitHub
TreatmentPatterns	V2.1.1	Maarten van Kessel	CRAN

The open-source tools that empower OHDSI research are not only available to the community, but they are DEVELOPED by the community. We thank the many developers

who empowe initiatives around the world!





Why OHDSI and the world needs Sweden

The Legatum Prosperity IndexTM Ranks 1–56

European Journal of Epidemiology (2025) 40:563–579 https://doi.org/10.1007/s10654-025-01226-9

DATA RESOURCE

Health

15

10

11

12

8

13

25

Education

10

36

11

19

18

Natural

39

10

13


12

11

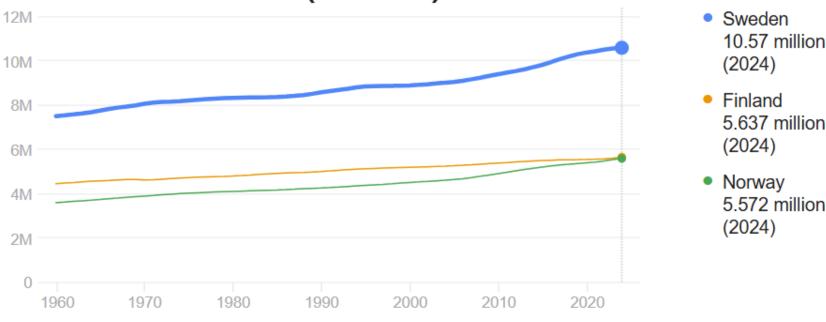
The healthcare system in Sweden

Jonas F. Ludvigsson^{1,2,3} · David Bergman¹ · Catharina Ihre Lundgren^{4,5} · Kristina Sundquist⁶ · Jean-Luc af Geijerstam⁷ · Anna H. Glenngård⁸ · Marie Lindh⁹ · Johan Sundström^{10,11} · Johan Kaarme^{12,13} · Jialu Yao¹

Received: 10 March 2025 / Accepted: 23 March 2025 / Published online: 19 May 2025 © The Author(s) 2025

rank	rank	rank	Country
4	1	1	Denmark
1	3	2	Sweden
2	2	3	Norway
5	4	4	Finland
3	5	5	Switzerlan
6	6	6	Netherland
8	7	7	Luxembou
14	9	8	Iceland
9	8	9	Germany
7	10	10	New Zeala

Abstract

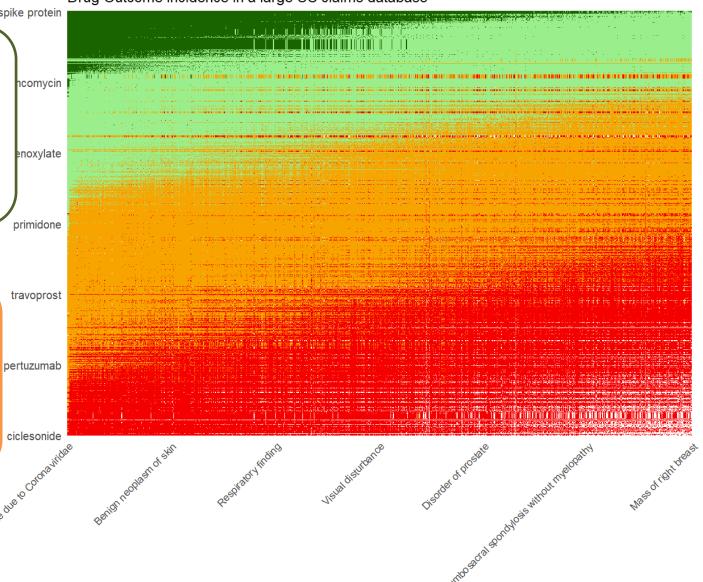

The Swedish population is characterized by high life expectancy and low avoidable mortality rates. This review outlines the Swedish healthcare system, which offers universal access to all residents and has a long tradition of reforms for social equity. Responsibility for healthcare is shared between the state, the regions, and the municipalities. The Ministry of Health and Social Affairs provides the overall healthcare framework; additionally, several governmental agencies are directly involved in healthcare and public health initiatives. The 21 regions organize, finance, and provide most primary, secondary, and tertiary care, as well as health information channels. Resources for primary care are less plentiful than in many other countries. The 290 municipalities deliver care to elderly people and those with functional impairment. The Swedish healthcare system is primarily tax-funded, with 86% of total healthcare expenditures from public expenses and <1% from voluntary health insurance. The gross domestic product (GDP) share of healthcare expenditures, 10.5% in 2022, is above the EU average. The level of unmet needs in the population is low, due to universal coverage and caps on user charges except for dental care. Sweden's healthcare system performs well on care quality and patient satisfaction, but suffers from workforce shortage and care fragmentation. Limitations in care coordination can be attributed to a siloed digital infrastructure and care governance, a low number of hospital beds per capita, and a compensation system that often does not incentivize coordination. Despite these challenges, life expectancy is high and avoidable mortality rates are low in Sweden.

Why Sweden needs OHDSI and the rest of the world

Sweden / Population

10.57 million (2024)

Why Sweden needs OHDSI and the rest of the world


SARS-CoV-2 (COVID-19) vaccine, mRNA spike protein

If full health data for the entire Swedish population of 10 million were accessible, then ~10% of questions on drug-outcome pairs may have sufficient statistical power to answer alone if the incidence are comparable to US population....

op 100

...but even with a national database, >70% of drug-outcome questions are likely to have insufficient data for prediction or estimation, so an international network study would be required to generate reliable answers

Drug Outcome Incidence in a large US claims database

Drug-outcome Incidence

0.000001 - 0.00001 0.00001 - 0.0001 0.0001 - 0.001 > 0.001

< 0.000001

Join the Journey!

https://www.ohdsi.org/join-the-journey/

Looking forward to collaborating with all of you!

Email me: ryan@ohdsi.org